
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Wrong Way: Successes, Failures, and 
Lessons Learned from Using the “Wrong” 
Programming Approach for Summit
Philip C. Roth
Oak Ridge Leadership Computing Facility
Oak Ridge National Laboratory

September 2020



2

Mid-2020 DOE Landscape

• Department of Energy (DOE) computing centers exhibit variety
– Accelerators vs. no accelerators

• Variety of accelerator vendors
• Variety in CPU/GPU ratios, connectivity

– Interconnect type, topology, capabilities
– On-node NVM vs. near-node NVM vs. no NVM

• DOE Centers epitomize need for Performance, Portability, and 
Productivity



3

The DOE Landscape: OLCF

• Oak Ridge Leadership Computing 
Facility (OLCF) currently fields Summit
– Each node contains six NVIDIA V100 GPUs 

and two POWER9 CPUs

• OLCF will soon deploy Frontier
– Each node will contain four AMD Radeon 

Instinct GPUs and one AMD EPYC CPU

• 90%+ of OLCF systems’ computational 
capability comes from GPUs
– Other systems have/will have similar 

characteristics
– I will focus on GPUs in this talk

99



4

“Right Way” vs. “Wrong Way”

• GPU type suggests “right” or “natural” approach
– Summit:

• CUDA
• OpenACC
• OpenMP offload

– Frontier
• HIP
• OpenMP offload

– Also portability libraries (e.g., Kokkos, RAJA) with these 
backends

• Sometimes fun to consider what is possible, especially 
when it is “natural” on some other interesting system(s)
– Open source options
– Functionality rather than performance

• Definitely NOT a criticism about vendor(s) choices!



5

OLCF: Some Possible “Wrong Ways”

• What “wrong ways” are theoretically 
possible on Summit?
– OpenCL
– HIP
– SYCL
– DPC++

• And on Frontier?
– OpenCL
– SYCL
– DPC++



6

Summit: OpenCL

• OpenCL: Khronos standard, C-based, very mature – and 
might even be performance portable

• CUDA installation includes some OpenCL-related files
– Installable Client Driver (ICD) with config file
– OpenCL loader library (libOpenCL.so) – but it is for X86_64
– No OpenCL headers
– To reiterate: I am not criticizing NVIDIA for not supporting 

OpenCL on POWER9

• Two possible “wrong ways”
– For both: Download Khronos headers, build Khronos ICD loader 

library
– Option 1: use NVIDIA ICD

• Platform/device queries and data transfer OK, can’t do OpenCL JIT 
compile

– Option 2: use Portable Computing Language (POCL) open 
source OpenCL implementation

CLInfo with NVIDIA ICD



7

Summit: HIP

• Heterogeneous-compute Interface 
for Portability (HIP)

• Not really a “wrong way” on 
Summit
– HIP designed as portability layer with 

AMD ROCm and NVIDIA CUDA 
backends

• OLCF provides a module for HIP 
but not (yet) any of the hip* 
libraries
– HIP can be installed by user as header-

only library
– HIP libraries can be built for CUDA 

backend and installed by user

11

Producing and Compiling HIP Code

CUDA 
Code

HIP 
Code

Hipify-clang

Hipify-perl
Hipcc, platform ‘nvcc’

Executable 
Code for 
NVIDIA GPU

Executable 
Code for 
AMD GPU

nvcc

Hipcc, platform ‘hcc’ hcc

CUDA Code

HC Code

• Hipify-* tools help convert CUDA 
code (kernels and API calls) to 
HIP

• Hipcc compiler driver invokes 
correct underlying compiler to 
compile for target GPU, with 
GPU-specific HIP headers

15

Performance (II)

• Average of 
normalized HIP 
performance 
was 99.8% with 
data transfer 
costs, 99.9% 
w/out

Note axis range (0.9 to 1.05)



8

Summit: SYCL

• SYCL: Khronos standard, C++-based, 
OpenCL’s spiritual successor

• Some options for this “wrong way”:
– hipSYCL: a SYCL 1.2 implementation built on 

HIP
• CUDA for GPU, OpenMP for CPU
• Have demonstrated this running on Summit with 

simple examples, e.g., matrix aX+Y
– Tried using CodePlay’s Community Edition 

to compile kernels to PTX code on spare 
x86_64 system, transferring to Summit, and 
using them via POCL – not successful



9

DPC++

• Intel’s oneAPI C++-based programming approach
– Several useful extensions to SYCL 1.2 (some appearing in SYCL 2020)

• A “wrong way” for Summit:
– Intel LLVM staging repository includes DPC++ compiler sources
– Found small number of build problems, e.g., reliance on CPUID 

instruction that isn’t supported on POWER9

• Others have reported some success in working around for 
other non-x86_64 platforms, so may be possible soon on 
Summit



10

Frontier: OpenCL, SYCL, and DPC++

• Have less experience trying these “wrong way” approaches on pre-
Frontier systems so far

• AMD has traditionally supported OpenCL 
– But SPIR/SPIR-V support varies by product line - not supported on MI25/MI60
– Options: POCL, “manual” conversion of SPIR-V to AMDGCN

• SYCL and DPC++
– CodePlay’s community edition

• Earlier versions had some undocumented support for AMDGCN, missing from more 
recent versions

– Intel LLVM repository
• CPUID not an issue here
• Still reliant on SPIR-V tools/translator to convert to AMDGCN?



11

Acknowledgements

• This research was supported by the Exascale Computing Project (17-
SC-20-SC), a joint project of the U.S. Department of Energy’s Office 
of Science and National Nuclear Security Administration, 
responsible for delivering a capable exascale ecosystem, including 
software, applications, and hardware technology, to support the 
nation’s exascale computing imperative.

• This research used resources of the Oak Ridge Leadership 
Computing Facility at the Oak Ridge National Laboratory, which is 
supported by the Office of Science of the U.S. Department of 
Energy under Contract No. DE-AC05-00OR22725.



12

Summary
• Thanks to open source projects, it can be quite interesting to 

explore the “wrong way” options for programming GPUs on 
systems like OLCF’s Summit
– Actively exploring OpenCL, HIP, SYCL/DPC++
– Starting to explore approaches for Frontier

• There can be a cost in terms of
– Stability
– Standards compliance
– Performance
– Support

• For more information: rothpc@ornl.gov

mailto:rothpc@ornl.gov

